Student name: day 7 May 2014

Wednes-

Comp no#:

Math 205 2nd Periodic Exam

Question (I): 7 Marks State whether the following is (True) or (False) and correct the false one

1- If f has a continuous partial derivatives of all orders on R^3 , then div $(curl \nabla f) = \overrightarrow{0}$

2- The fundamental theorem of line integrals can be applied by :

$$\int\limits_{C} \nabla f \bullet d \overrightarrow{r} = f(\overrightarrow{r}(b)) - f(\overrightarrow{r}(a)) \text{ for } a \leq t \leq b.$$

$$3\text{-} \overbrace{\hspace{1cm}} \oint\limits_{C} \overrightarrow{F} \cdot \overrightarrow{n} \ ds = \iint\limits_{D} \ curl \ \overrightarrow{F} \ dA$$

The Surface area is given by: $A(S) = \iiint \sqrt{1 + (\frac{\partial f}{\partial s})^2 + (\frac{\partial f}{\partial s})^2} ds$

4- The Surface area is given by : $A(S) = \iiint_S \sqrt{1 + (\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2 + (\frac{\partial f}{\partial z})^2} dv$

5- The flux of \overrightarrow{F} across S is the Surface integral of \overrightarrow{F} over the surface S and calculated by :

$$\iint\limits_{S} \overrightarrow{F} \bullet d\overrightarrow{S} = \iint\limits_{S} \overrightarrow{F} \bullet \overrightarrow{k} \ d\overrightarrow{S} = \iint\limits_{D} (-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R) \ dA$$

6-DBy Stoke's Theorem the line integral $\int_C \overrightarrow{F} \bullet d\overrightarrow{r} = \iint_S div \overrightarrow{F} \bullet d\overrightarrow{S}$

7- If S is a shere and \overrightarrow{F} is a constant vector field, then $\iint_S \overrightarrow{F} \cdot d\overrightarrow{S} = 0$

Solve the following Questions:

(1) 4 Marks

Evluate the following line integral: $\int_{C} \overrightarrow{F} \bullet d\overrightarrow{r}$ where $\overrightarrow{F}(x,y) = \langle xy, x^2 \rangle$ and C is given by $\overrightarrow{r}(t) = \langle \sin t, (1+t) \rangle$ $0 \le t \le \pi$

(2)6 Marks

- (i) Show that \overrightarrow{F} is a conservative vector field
- (ii) Find the function f such that $\overrightarrow{F} = \nabla f$

(iii) Evaluate
$$\int_C \overrightarrow{F} \bullet d\overrightarrow{r}$$
 where $\overrightarrow{F}(x,y) = \langle 4x^3y^2 - 2xy^3, 2x^4y - 3x^2y^2 + 4y^3 \rangle$

and
$$C: \overrightarrow{r}(t) = \langle t + \sin \pi t, 2t + \cos \pi t \rangle$$
, $0 \le t \le 1$

(3) <u>4 Marks</u> Use Green's Theorem to evaluate $\int_C \sqrt{1+x^3}dx + 2xy\ dy$ where C is the triangle

with vertices(0,0), (1,0) and (1,3)

(4) <u>A Marks</u> Find the \overline{flux} of \overline{F} $(x,y,z) = \langle xy,yz,xz \rangle$, S is the part of the paraboloid $z = 4 - x^2 - y^2$ that lies above the square $0 \le x \le 1$, $0 \le y \le 1$ and has upward

orientation.

 Good

Luck

Dr.Khadijah

A.Sharaf